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a b s t r a c t

Three fully optimized geometries of 3-nitro-1,2,4-triazol-5-one–hydrogen fluoride (NTO–HF) complexes
have been obtained with density functional theory (DFT) method at the B3LYP/6–311++G** level. The
intermolecular interaction energy is calculated with zero point energy (ZPE) correction and basis set
superposition error (BSSE) correction. The greatest corrected intermolecular interaction of the NTO–HF
complexes is −34.155 kJ/mol. Electrons in complex systems transfer from NTO to HF. Natural bond orbital
(NBO) analysis is performed to reveal the origin of the interaction. The strong hydrogen bonds contribute to
eywords:
-Nitro-1,2,4-triazole-5-one (NTO)
TO–HF complex

ntermolecular interaction
ensity functional theory
atural bond orbital analysis

the interaction energies dominantly. Frequency calculations are carried out on each optimized structure,
and their IR spectra are discussed. Vibrational analysis show that there are large red-shifts for H–X (X = N
and F) stretching vibrational frequencies in the NTO and hydrogen fluoride complexes. The changes of
thermodynamic properties from the monomer to complexes with the temperature ranging from 200 K
to 1500 K have been obtained using the statistical thermodynamic method. It is found that two of three
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NTO–HF complexes can be

. Introduction

3-Nitro-1,2,4-triazole-5-one (NTO), developed at Los Alamos
ational Laboratory in 1983, was found to possess desirable
nd attractive characteristics such as high energy release on
ecomposition, high detonation velocity, good thermal stabil-

ty (decompose only above 200 ◦C [1]), relatively insensitive to
mpact and shock, and autocatalytic behavior during thermal
ecomposition [2–9]. NTO has the lower shock sensitivity than
hat of trinitrotoluene (TNT) and high explosive performance
s hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-
,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) that are among the
ost effective and widely used explosives and monopropellants

10]. Furthermore, there have been several theoretical studies
n NTO in several recent works [11–17]. It is known that inter-
olecular forces control diverse phenomena such as diffusion,

ggregation and detonation. In recent years, we have examined

he intermolecular interactions in a series of explosives and
btained some meaningful information [18–22] that is valuable
or further study of energetic materials. Generally HF is prod-
ct during explosives exploding. In this paper, we investigated
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uced spontaneously from NTO and HF at room temperature.
© 2008 Elsevier B.V. All rights reserved.

heoretically the intermolecular interaction between NTO and
F.

. Computational methods

The geometries of isolated NTO and their corresponding hydro-
en fluoride complexes were fully optimized at the DFT-B3LYP
23,24] level by the Berny method [25,26] with 6–311++G** basis set
oncluding diffusion action. Natural bond orbital analyses and fre-
uency calculations were performed on each optimized structure.
requency calculations are carried out on each optimized structure,
nd their IR spectra are discussed. Thermodynamic data and their
hanges upon compounding were derived from statistical thermo-
ynamics [27] based on the frequencies.

The interaction energy of the complex is evaluated as the energy
ifference of the subsystem and complex. The basis sets commonly
sed to calculate the energies are far from being saturated. As a
esult, each subsystem in any complex will tend to lower its energy
ue to the use of the basis functions of the other subsystem. The
nergies obtained at the equilibrium geometry of the complex for
ach subsystem are lower than those calculated at the same geom-

try with the basis functions of the respective subsystem alone.
his energy difference is the so-called basis set superposition error
BSSE) that can be checked by the Boys and Bernardi’s counter-
oise procedure (CP) [28–30]. All calculations were performed with
aussian03W program [31].
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Table 1
Part of fully optimized geometries of NTO and NTO–HF at B3LYP/6–311++G** levela

Geometrical parameter NTO I II III

N1–N2 0.1358 0.1357 0.1361 0.1349
N1–C5 0.1398 0.1384 0.1381 0.1402
N1–H10 0.1009 0.1014 0.1009 0.1009
N2–C3 0.1291 0.1290 0.1291 0.1295
C3–N4 0.1366 0.1369 0.1365 0.1367
C3–N6 0.1452 0.1452 0.1456 0.1447
N4–C5 0.1403 0.1387 0.1388 0.1402
N4–H11 0.1009 0.1010 0.1016 0.1019
C5–O9 0.1205 0.1222 0.1222 0.1203
N6–O7 0.1215 0.1213 0.1214 0.1211
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Table 3
The calculated natural atomic charges (e) of NTO and NTO–HF complexesa

Atom NTO I II III

N1 −0.422 −0.411 −0.407 −0.413
N2 −0.221 −0.208 −0.220 −0.211
C3 0.463 0.463 0.470 0.456
N4 −0.619 −0.601 −0.609 −0.631
C5 0.768 0.777 0.777 0.770
N6 0.463 0.463 0.464 0.473
O7 −0.322 −0.313 −0.317 −0.296
O8 −0.385 −0.382 −0.368 −0.447
O9 −0.598 −0.652 −0.654 −0.589
H10 0.423 0.451 0.427 0.424
H11 0.451 0.456 0.477 0.467
F
H

p
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6–O8 0.1230 0.1230 0.1227 0.1241
12–H13 (0.0922) 0.0952 0.0952 0.0939

a Bond lengths are in nm and values in parentheses are data of HF.

. Results and discussion

.1. Optimized geometries

Three stable structures of NTO–HF complexes were obtained
Fig. 1). After stationary points were located, vibrational frequen-
ies were calculated in order to ascertain that each structure
ound corresponds to a minimum on the potential energy sur-
aces (no imaginary frequencies) for all structures in Fig. 1.
TO–HF complexes I, II and III possess Cs symmetry. Obviously,

he intermolecular interactions do not change the planarity of NTO
olecule.
Some geometrical parameters are collected in Table 1. Com-

ared to the monomer, the bond lengths of complexes I, II and
II change large. The lengths of N1–C5 and N4–C5 of complex I
ecrease by 1.4 pm and 1.6 pm, respectively, while the N1–H10,
5–O9 and F12–H13 lengths increase by 0.5 pm, 1.7 pm and 3.0 pm,
espectively. The lengths of complex II’s N1–C5 and N4–C5 decrease
y 1.7 pm and 1.5 pm, respectively, while its N4–H11, C5–O9 and
12–H13 lengths increase by 0.7 pm, 1.7 pm and 3.0 pm, respec-
ively. The lengths of III’s N4–H11, N6–O8 and F12–H13 increase
y 1.0 pm, 1.1 pm, and 1.7 pm, respectively. The changes of other
ond lengths of all the structures predicted are noticeably smaller.
s a whole, intermolecular H-bonds elongate the X–O (X = N, C)
nd X–H (X = N, F) bonds. The bond angles and the dihedral angles
f all three NTO–HF complexes change slightly from its monomer,
hich implies that the influence of interaction on bond bending or

nternal rotation is small.

.2. Binding energies

Table 2 gives both the uncorrected and corrected binding ener-
ies. There are no imaginary frequencies for any of the structures
n Table 2, indicating that the structures in Fig. 1 are indeed the

inima on their potential energy surfaces.
Table 2 shows that the calculation gives the ZPE and BSSE
orrections of comparable values, both sum of them account for
4.94%, 35.88% and 51.74% of corrected binding energies, respec-
ively, which illustrates that it is necessary to correct ZPE and
SSE values. Both the uncorrected and corrected binding energies

ndicate that the stability of the optimized structures I and II is com-

t
o

T
t

able 2
otal energy, zero-point energy and interaction energy (kJ/mol) at B3LYP/6–311++G** leve

nergy HF NTO I

−263816.471 −1370871.425 −1
E

PE
SSE
EC,ZPE
12 (−0.548) −0.601 −0.599 −0.571
13 (0.548) 0.558 0.558 0.567

a Values in parentheses are data of HF.

arable, whereas the structure III is characterized by the smallest
tability.

.3. Atomic charges and charge transfer

Table 3 lists the atomic NBO charges of NTO and its complexes.
able 3 with Fig. 1 shows that the atoms whose charges change
ore are primarily these atoms of the vicinity of subsystem.
Compared to free HF molecule, charges on the H13 of I’s HF

ubsystem increase by 0.010 e, while charges on F12 decrease by
.053 e, net charge of HF molecule decrease by 0.042 e, indicating
n effect of charge transfer through molecular contacting. Charges
n O9 of I’s NTO subsystem decrease by 0.054 e, while charges on
he other atom of I’s NTO subsystem all increase. Similarly, charges
n the H13 of II’s HF subsystem increase by 0.010 e, while charges
n F12 decrease by 0.051 e, charges on O9 of II’s NTO subsystem
ecrease by 0.056 e, while charges on the other atom of NTO sub-
ystem all increase, net charge of HF molecule decrease by 0.041 e.
harges on O8 and F12 of complex III decrease by 0.062 e and
.023 e, respectively, net charge of HF molecule decrease by 0.004 e.
s a whole, the atoms whose charges change more are primarily

hese atoms of the vicinity of subsystem and electrons in NTO–HF
omplexes transfer from NTO to HF.

.4. Natural bond orbital analysis

Table 4 summarizes the second-order perturbative estimates of
donor–acceptor’ (bond–antibond) interactions in the NBO basis
or all the complexes. This is carried out by examining all pos-
ible interactions between ‘filled’ (donor) Lewis-type NBOs and
empty’ (acceptor) non-Lewis NBOs, and estimating their stabi-
ization energy by second-order perturbation theory [32–34]. The
tabilization energies E are proportional to the NBO interacting
ntensities. When the donor and the acceptor belong to different
ubmolecules in a complex, we call it intermolecular NBO interac-

ion. It is the intermolecular NBO interaction that reveals the origin
f intermolecular interactions.

As can be seen from the intermolecular NBO interaction in
able 4, the main NBO interacting in the complexes I and II are that
he lone pairs on oxygen atom of trizole submolecule act as donor

l

II III

634734.365 −1634733.245 −1634719.052
−46.467 −45.348 −31.154

9.046 9.046 7.327
2.889 2.829 3.193

−34.155 −33.095 −20.329



G. Fang et al. / Journal of Hazardous Materials 160 (2008) 51–55 53

d inter

a
l
l
N
a

3

a
h

a
t
a
a
s

Fig. 1. Atomic number, optimized geometries an

nd that the F–H antibond of HF submolecule as acceptor. Simi-
arly, the main NBO interacting in the complexes III are that the
one pairs on fluorine atom of HF submolecule and oxygen atom of
TO’s nitro-group act as donor and that the NTO’N–H and HF’F–H
ntibond as acceptor.
.5. Vibrational frequencies

Fig. 2 shows the simulated infrared (IR) spectra for the NTO
nd their complexes, where the intensity is plotted against the
armonic vibrational frequencies (the scale factor is 0.96 [35]).

r

s
3
N

Fig. 2. IR spectra of NTO and
molecular distance (nm) of NTO–HF complexes.

For the complexity of vibrational modes, it is difficult to attribute
ll bands, so we have only analyzed some H–X (X = N and F) vibra-
ional frequencies in the NTO and three complexes. For the HF
nd NTO, it is found that the HF stretching vibrations appears
t 3942.00 cm−1 (not listed), while NTO’s N1–H10 and N4–H11
tretching vibrations appear at 3518.14 cm−1 and 3516.27 cm−1,

espectively.

Compared to HF and NTO monomer, the HF and N1–H10
tretching vibration of complex I appear at 3335.22 cm−1 and
452.00 cm−1, respectively, indicating large red-shifts. The HF and
4–H11 stretching vibrations of complex II appear at 3337.52 cm−1

NTO–HF complexes.
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Table 4
Part of calculated results of NTO–HF at the B3LYP/6–311++G** level by NBO analysisa

Structure Donor NBO (i) Acceptor NBO (j) E (kJ mol−1)

I LP(1)O9 BD*(1)F12–H13 18.660
LP(2)O9 BD*(1)F12–H13 73.136
LP(3)F12 BD*(1)N1–N2 1.129
LP(3)F12 BD*(1)N1–H10 7.447

II LP(1)O9 BD*(1)F12–H13 18.493
LP(2)O9 BD*(1)F12–H13 70.082
LP(3)F12 BD*(1)N4–H11 9.372

III LP(1)O8 BD*(1)F12–H13 17.321
LP(2)O8 BD*(1)F12–H13 32.928
BD(1)F12–H13 BD*(1)N4–H11 2.677
LP(1)F12 BD*(1)N4–H11 1.757
LP(3)F12 BD*(1)N4–H11 37.446

a E denotes the stabilization energy, BD denotes bonding orbital, BD* denotes
antibonding orbital, LP denotes lone pair. For BD and BD*: (1) denotes � orbital.
F
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−
plexes can be spontaneously produced from the isolated monomer
under 200 K. Moreover, the complexes I and II can be spontaneously

T
T

S

H

N

I

I

I

or LP: (1), (2) and (3) denote the first, the second and the third lone pair electron,
espectively. Only the stable energies over 1.00 kJ mol−1 are listed.

nd 3432.88 cm−1, respectively. Those of complex III appear
t 3629.69 cm−1 and 3346.23 cm−1, respectively. All calculation
how that there are strong interactions in the O· · ·H–X (X = N

nd F) hydrogen bond and there are large red-shifts for H–X
tretching vibrational frequencies in the NTO and HF com-
lexes.

p
v
t

able 5
he thermodynamic properties of HF, NTO and NTO–HF complexes at different temperatu

tructure Temperature (K) C0
p (J mol−1 K−1) S0

m (J mol−1 K−1

F 200.00 29.10 161.90
298.15 29.10 173.51
500.00 29.11 188.55
700.00 29.27 198.36
900.00 29.72 205.76

1100.00 30.40 211.79
1300.00 31.18 216.93
1500.00 31.95 221.44

TO 200.00 87.36 315.95
298.15 117.38 356.54
500.00 164.28 429.23
700.00 192.41 489.38
900.00 209.65 539.97

1100.00 220.97 583.21
1300.00 228.82 620.80
1500.00 234.50 653.96
200.00 110.03 355.99
298.15 144.93 406.55
500.00 198.66 495.30
700.00 230.29 567.62
900.00 249.85 628.03

1100.00 262.94 679.51
1300.00 272.21 724.23
1500.00 279.00 763.68

I 200.00 110.17 356.06
298.15 144.98 406.65
500.00 198.63 495.41
700.00 230.25 567.72
900.00 249.82 628.11

1100.00 262.92 679.59
1300.00 272.20 724.31
1500.00 279.00 763.76

II 200.00 114.14 358.99
298.15 149.21 411.29
500.00 201.20 501.85
700.00 231.66 574.82
900.00 250.56 635.48

1100.00 263.28 687.07
1300.00 272.34 731.83
1500.00 279.02 771.29

a �ST = (S0
T )

i
− (S0

T )NTO − (S0
T )HF, �HT = (H0

T + E + ZPE)
i
− (H0

T + E + ZPE)NTO − (H0
T

+ E +
Materials 160 (2008) 51–55

.6. Thermodynamic properties

On the basis of vibrational analysis and statistical thermody-
amic, the standard thermodynamic functions, heat capacities (C0

p),
ntropies (S0

m) and enthalpies (H0
m), were obtained and listed in

able 5. It can be seen that the values of the calculated func-
ions of all structures increase with the increasing temperature.
he magnitudes of the heat capacities (C0

p) of complexes I, II and
II are approximately the same at each temperature. In the course
f monomer to complexes, the entropy changes (�ST) and the
nthalpy changes (�HT) decrease at any temperature from 200 K to
500 K. At the same temperature, the enthalpy change (�HT) value
f I is lower than that of II and III, which is consistent with the
esults of binding energy. The intermolecular interaction is there-
ore an exothermic process accompanied by a decrease, and the
nteractions weaken as temperature increases.

Using the �G = �H − T�S equation, the changes of Gibbs free
nergies (�G) were obtained at various temperatures. It can be
een that �GT in the processes from the monomer to the com-
lexes I, II and III under 200 K are −15.77 kJ/mol, −14.67 kJ/mol and
2.44 kJ/mol, respectively. They are all negative, indicating com-
roduced from the isolated monomer under 298.15 K. The �GT
alue increases as temperature increases for each complex, thus
he interactions weaken as temperature increases.

resa

) H0
m (kJ/mol) �ST (J mol−1 K−1) �HT (kJ/mol) �GT (kJ/mol)

5.82
8.68

14.55
20.39
26.28
32.29
38.45
44.76
11.45
21.53
50.32
86.23

126.57
169.70
214.72
261.09

14.55 −121.86 −40.14 −15.77
27.09 −123.50 −40.54 −3.71
62.21 −122.48 −40.08 21.15

105.38 −120.12 −38.66 45.42
153.53 −117.70 −36.74 69.18
204.89 −115.49 −34.52 92.51
258.46 −113.50 −32.13 115.41
313.61 −111.72 −29.66 137.91

14.54 −121.79 −39.03 −14.67
27.09 −123.40 −39.42 −2.62
62.21 −122.37 −38.96 22.22

105.37 −120.02 −37.55 46.46
153.52 −117.62 −35.63 70.22
204.88 −115.41 −33.41 93.53
258.44 −113.42 −31.03 116.41
313.59 −111.64 −28.56 138.89
14.88 −118.86 −26.21 −2.44
27.85 −118.76 −26.18 9.22
63.66 −115.93 −25.03 32.92

107.21 −112.92 −23.23 55.80
155.57 −110.25 −21.10 78.11
207.03 −107.93 −18.78 99.93
260.64 −105.90 −16.35 121.31
315.80 −104.11 −13.87 142.28

ZPE)HF, �GT = �HT − T�ST, (i = I, II and III).
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. Conclusions

From the DFT-B3LYP calculations reported in the paper, the fol-
owing conclusions can be drawn:

1) The greatest corrected intermolecular interaction of the
NTO–HF complexes is −34.155 kJ/mol.

2) Vibrational analysis show that there are strong interactions
in the O· · ·H–X (X = N and F) hydrogen bonds and there are
large red-shifts for H–X stretching vibrational frequencies in
the NTO–HF complexes.

3) The interaction is an exothermic process along with the
decreases of entropies. The values of free energy of the complex
formation became more positive as temperature increases. The
process of forming NTO–HF complexes I and II from NTO and
HF is spontaneous at room temperature.
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